skip to main content


Search for: All records

Creators/Authors contains: "Shen, Zuo-Jun Max"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Connected and automated vehicle (CAV) technology is providing urban transportation managers tremendous opportunities for better operation of urban mobility systems. However, there are significant challenges in real-time implementation as the computational time of the corresponding operations optimization model increases exponentially with increasing vehicle numbers. Following the companion paper (Chen et al. 2021), which proposes a novel automated traffic control scheme for isolated intersections, this study proposes a network-level, real-time traffic control framework for CAVs on grid networks. The proposed framework integrates a rhythmic control method with an online routing algorithm to realize collision-free control of all CAVs on a network and achieve superior performance in average vehicle delay, network traffic throughput, and computational scalability. Specifically, we construct a preset network rhythm that all CAVs can follow to move on the network and avoid collisions at all intersections. Based on the network rhythm, we then formulate online routing for the CAVs as a mixed integer linear program, which optimizes the entry times of CAVs at all entrances of the network and their time–space routings in real time. We provide a sufficient condition that the linear programming relaxation of the online routing model yields an optimal integer solution. Extensive numerical tests are conducted to show the performance of the proposed operations management framework under various scenarios. It is illustrated that the framework is capable of achieving negligible delays and increased network throughput. Furthermore, the computational time results are also promising. The CPU time for solving a collision-free control optimization problem with 2,000 vehicles is only 0.3 second on an ordinary personal computer. 
    more » « less
  2. This study investigates dynamic inventory relocation to respond proactively to the changing relief demand forecasts over time. In particular, we examine how to relocate mobile inventory optimally to serve nonstationary stochastic demand at several potential disaster sites. We propose a dynamic relocation model using dynamic programming (DP) and develop both analytical and numerical results regarding optimal relocation policies, the minimum cost‐to‐go function, and the value of inventory mobility over traditional warehouse pre‐positioning. Given the computational complexity of the backwards DP algorithm, we develop a base state heuristic (BSH) for general problems by exploiting the real‐world disaster pattern of occurrence. For problems with temporally independent demand, we propose a polynomial time exact algorithm based on a spatial–temporal graph. For problems with spatially independent demand, we design a speedup technique to implement BSH in polynomial time. The proposed model and algorithms are further extended to consider the impact of transportation uncertainties. Numerical experiments show that the proposed algorithms return high‐quality decisions only in a small fraction of the time required by an exact algorithm and a myopic algorithm. The proposed model and algorithms are applicable to any type of mobile inventory, facility, or server in similar settings.

     
    more » « less
  3. Over the past two decades, there has been explosive growth in the application of robust optimization in operations management (robust OM), fueled by both significant advances in optimization theory and a volatile business environment that has led to rising concerns about model uncertainty. We review some common modeling frameworks in robust OM, including the representation of uncertainty and the decision‐making criteria, and sources of model uncertainty that have arisen in the literature, such as demand, supply, and preference. We discuss the successes of robust OM in addressing model uncertainty, enriching decision criteria, generating structural results, and facilitating computation. We also discuss several future research opportunities and challenges.

     
    more » « less
  4. ABSTRACT

    When supply disruptions occur, firms want to employ an effective pricing strategy to reduce losses. However, firms typically do not know precisely how customers will react to price changes in the short term, during a disruption. In this article, we investigate the customer's order variability and the firm's profit under several representative heuristic pricing strategies, including no change at all (fixed pricing strategy), changing the price only (naive pricing strategy), and adjusting the belief and price simultaneously (one‐period correction [1PC] and regression pricing strategies). We show that the fixed pricing strategy creates the most stable customer order process, but it brings lower profit than the naive pricing strategy in most cases. The 1PC pricing strategy produces a more volatile customer order process and smaller profit than the naive one does. Although the regression pricing strategy is a more advanced approach, it leads to lower profit and greater customer order variability than the naive pricing strategy (but the opposite when compared to the 1PC strategy). We conclude that (i) completely eliminating the customer order variability by employing a fixed pricing strategy is not advisable and adjusting the price to match supply with demand is necessary to improve the profit; (ii) frequently adjusting the belief about customer behaviors under imperfect information may increase the customer's order variability and reduce the firm's profit. The conclusions are robust to the inventory assumption (i.e., without or with inventory carryover) and the firm's objective (i.e., market clearance or profit maximization).

     
    more » « less
  5. This paper studies two‐stage lot‐sizing problems with uncertain demand, where lost sales, backlogging and no backlogging are all considered. To handle the ambiguity in the probability distribution of demand, distributionally robust models are established only based on mean‐covariance information about the distribution. Based on shortest path reformulations of lot‐sizing problems, we prove that robust solutions can be obtained by solving mixed 0‐1 conic quadratic programs (CQPs) with mean‐risk objective functions. An exact parametric optimization method is proposed by further reformulating the mixed 0‐1 CQPs as single‐parameter quadratic shortest path problems. Rather than enumerating all potential values of the parameter, which may be the super‐polynomial in the number of decision variables, we propose a branch‐and‐bound‐based interval search method to find the optimal parameter value. Polynomial time algorithms for parametric subproblems with both uncorrelated and partially correlated demand distributions are proposed. Computational results show that the proposed models greatly reduce the system cost variation at the cost of a relative smaller increase in expected system cost, and the proposed parametric optimization method is much more efficient than the CPLEX solver.

     
    more » « less